[A91] F. Aurenhammer. Voronoi diagrams – A survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345–405, 1991.

[A07] N. M. M. de Abreu. Old and new results on algebraic connectivity of graphs. Linear Algebra and its Applications, 423, 53-73, 2007.

[AADVMO13] J. J. Acevedo, B.C. Arrue, J.M. Díaz-Báñez, I. Ventura, I. Maza, A. Ollero. Decentralized strategy to ensure information propagation in area monitoring missions with a team of UAVs under limited communications. In 2013 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), 565-574, 2013.

[AADVMO14] J.J. Acevedo, B.C. Arrue, J.M. Diaz-Bañez, I. Ventura, I. Maza, A. Ollero. One-to-one coordination algorithm for decentralized area partition in surveillance missions with a team of aerial robots. Journal of Intelligent & Robotic Systems, 74(1-2), 269-285, 2014.

[AAHPSV16] O. Aichholzer, V. Alvarez, T. Hackl, A. Pilz, B. Speckmann, B. Vogtenhuber. An improved lower bound on the number of triangulations. 32nd International Symposium on Computational Geometry (SOCG) 2016, to appear.

[AAHKS04] O. Aichholzer, F. Aurenhammer, H. Krasser, B. Speckmann. Convexity minimizes pseudo-triangulations. Comput. Geom. Theory Appl. 28, 3-10, 2004.

[AAK02] O. Aichholzer, F. Aurenhammer, H. Krasser. Enumerating order types for small point sets with applications. Order, 19(3):265-281, 2002.

[ABRS15] V. Alvarez, K. Bringmann, S. Ray, R. Seidel. Counting triangulations and other crossing-free structures approximately. Comput. Geom. Theory Appl., 48(5), 386-397, 2015.

[ACDFON15] O. Aichholzer, L. E. Caraballo, J. M. Díaz-Báñez, R. Fabila-Monroy, C. Ochoa, P. Nigsch. Characterization of extremal antipodal polygons. Graphs and Combinatorics, 31(2), 321-333, 2015.

[ACFFHHHW10] O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, F. Hurtado, D.R. Wood. Edge-removal and non-crossing configurations in geometric graphs. Discrete Mathematics and Theoretical Computer Science 12(1), 75-86, 2010.

[ACFLS10] B.M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, G. Salazar. 3-symmetric and 3-decomposable geometric drawings of Kn. Discrete Applied Mathematics, 158(12), 1240-1258, 2010.

[ACM09] Academia Mexicana de Ciencias. Revista de la Academia Mexicana de Ciencias 63(3), July-September 2012. URL (in Spanish): http://www.revistaciencia.amc.edu.mx/images/revista/63_3/PDF/Mujeres_Matematicas.pdf

[ACNS82] M. Ajtai, V. Chvátal, M. Newborn, E. Szemerédi. Crossing-free subgraphs. Ann. Discrete Math. 12, 9-12, 1982.

[ADCPO13] D. Alejo, J.M. Díaz-Báñez, J.A. Cobano, P. Pérez-Lantero, A. Ollero. The velocity assignment problem for conflict resolution with multiple aerial vehicles sharing airspace. Journal of Intelligent & Robotic Systems, 69(1-4), 331-346, 2013.

[AFFFHSS11] B. Ábrego, R. Fabila-Monroy, S. Fernández-Merchant, D. Flores-Peñaloza, F. Hurtado, V. Sacristan, M. Saumell. On crossing numbers of geometric proximity graphs. Comput. Geom. Theory Appl., 44(4), 216-233, 2011.

[AFGHHHUV14] O. Aichholzer, R. Fabila-Monroy, H. González-Aguilar, T. Hackl, M. A. Heredia, C. Huemer, J. Urrutia, and B. Vogtenhuber. 4-holes in point sets. Comput. Geom., 47(6), 644--650, 2014.

[AG16] O. Arizmendi, T. Gaxiola. On the spectral distributions of distance k-graphs of free product graphs. Preprint, 2016.

[AGOR07] O. Aichholzer, J. García, D. Orden, P. Ramos. New lower bounds for the number of (at most k)-edges and the rectilinear crossing number of Kn. Discrete and Computational Geometry, 38(1), 1-14, 2007.

[AGOR09] O. Aichholzer, J. García, D. Orden, P. Ramos. New results on lower bounds for the number of (at most k)-facets. European Journal of Combinatorics, 30(7), 1568-1574, 2009.

[AGRSU12] C. Alegría-Galicia, T. Garduño, A. Rosas-Navarrete, C. Seara, J. Urrutia. Rectilinear Convex Hull with minimum area. In Special LNCS Festschrift volume in honor of Ferran Hurtado’s 60th Birthday. Lecture Notes in Computer Science, 7579, 226–235. Springer-Verlag, 2012.

[AHHHKV07] O. Aichholzer, T. Hackl, C. Huemer, F. Hurtado, H. Krasser, B. Vogtenhuber. On the number of plane geometric graphs, Graphs and Combinatorics, 23(1), 67-84, 2007.

[AHLV15] O. Arizmendi, T. Hasebe, F. Lehner, C. Vargas. Relations between cumulants in noncommutative probability. Adv. Math. 282: 56-92, 2015.

[AHN04] O. Aichholzer, F. Hurtado, M. Noy. A lower bound on the number of triangulations of planar point sets. Comput. Geom. Theory Appl. 29(2), 135-145, 2004.

[AK07] Abstract order type extension and new results on the rectilinear crossing number. Comput. Geom. Theory Appl. 36, 2-15, 2007.

[ALS07] L. Accardi, R. Lenczewski, R. Salapata, Decompositions of the free product of graphs. Inf. Dimen. Anal. Quantum Probab. Relat. Top. 10, 303-334, 2007.

[AOSS08] O. Aichholzer, D. Orden, F. Santos, B. Speckmann. On the number of pseudo-triangulations of certain point sets. Journal of Combinatorial Theory, Series A 115(2), 254-278, 2008.

[AOSU14] C. Alegría-Galicia, D. Orden, C. Seara, J. Urrutia. On the O-hull of planar point sets. In 30th European Workshop on Computational Geometry (EuroCG), March 2014.

[AOSU15] C. Alegría-Galicia, D. Orden, C. Seara, J. Urrutia. Optimizing an oriented convex hull with two directions. In 31th European Workshop on Computational Geometry (EuroCG), March 2015.

[AR15] A. Asinowski, G. Rote. Point sets with many non-crossing matchings, arXiv:1502.04925, 2015.

[AS15] O. Arizmendi, G. Salazar. Large area convex holes in random point sets. ArXiv e-prints, June 2015.

[ASU13] C. Alegría-Galicia, C. Seara, J. Urrutia. Computing containment relations between rectilinear convex hulls. In Mexican Conference on Discrete Mathematics and Computational Geometry, 60th birthday of Jorge Urrutia, November 2013.

[B00] S.A. Bortoff. Path planning for UAVs. In IEEE American Control Conference, 2000. Proceedings of the 2000 Vol. 1(6), 364-368, 2000.

[BB09] F. Baccelli, B. Blaszczyszyn. Stochastic geometry and wireless networks: Theory, volume 1. Now Publishers Inc, 2009.

[BC03] S. Bandyopadhyay, E. J. Coyle. An energy efficient hierarchical clustering algorithm for wireless sensor networks. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications (INFOCOM’03). IEEE Societies, volume 3, pp. 1713-1723, 2003.

[BCDFP16] L. Barba, L. E. Caraballo, J. M. Díaz-Báñez, R. Fabila-Monroy, E. Pérez- Castillo. Asymmetric polygons with maximum area. European Journal of Operational Research, 248(3), 1123-1131, 2016.

[BDLRV15] S. Bereg, J. M. Díaz-Báñez, M. A. Lopez, T. Rozario, K. Valavanis. A decentralized geometric approach for the formation keeping in unmanned aircraft navigation. In 2015 IEEE. International Conference on Unmanned Aircraft Systems (ICUAS’15), pp. 989-997, 2015.

[BFFLP14] S. Bereg, R. Fabila-Monroy, D. Flores-Peñaloza, M. A. López, P. Pérez-Lantero. Embedding the doublé circle in a square grid of mínimum size. Int. J. Comput. Geometry Appl. 24(3), 247 - , 2014.

[BG11] T. Biedl, B. Genç. Reconstructing Orthogonal Polyhedra from Putative Vertex Sets. Computational Geometry: Theory and Applications, 44(8), 409 – 417, 2011.

[BHMO13] L. Barrière, C. Huemer, D. Mitsche, D. Orden. On the Fiedler value of large planar graphs. Linear Algebra and its Applications 439(7), 2070-2084, 2013.

[BLR10] P. Biswal, J. R. Lee, S. Rao. Eigenvalue bounds, spectral partitioning, and metrical deformations via flows. Journal of the ACM, 57(3), 13:1-13:23, 2010.

[BMSU01] P. Bose, P. Morin, I. Stojmenovíc, J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks. Wireless networks, 7(6), 609-616, 2001.

[BTCWWZH10] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, X. He. Music recommendation by unified hypergraph: combining social media information and music content. In Proceedings of the 18th ACM international conference on Multimedia, 391-400, 2010.

[BZ09] M. Brazil, M. Zachariasen. Steiner trees for fixed orientation metrics. Journal of Global Optimization, 43(1), 141–169, 2009.

[C] The Cofla group. www.cofla-project.com

[C97] F. R. K. Chung, Spectral Graph Theory. AMS, 1997.

[C08] V. Capasso. Modeling, Simulation and Optimization of Complex Processes: Proceedings of the Third International Conference on High Performance Scientific Computing (2006, Hanoi, Vietnam), chapter On the Stochastic Geometry of Birth-and- Growth Processes. Application to Material Science, Biology and Medicine, pp. 131-161. Springer Berlin Heidelberg, 2008.

[CADAMO14] L. E. Caraballo, J. J. Acevedo, J. M. Díaz-Báñez, B. C. Arrue, I, Maza, A. Ollero. The block-sharing strategy for area monitoring missions using a decentralized multi-UAV system. In 2014 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), 602-610, 2014.

[CDFM08] F. Comellas, C. Dalfó, M.A. Fiol, M. Mitjana. The spectra of Manhattan street networks. Linear Algebra and its Applications, 429(7), 1823-1839, 2008.

[CDP15] L. E. Caraballo, J. M. Díaz-Báñez, E. Pérez-Castillo. Finding Unknown Nodes in Phylogenetic Graphs. In Bioinformatics and Biomedical Engineering, 403-414, Springer International Publishing, 2015.

[CGLAB] Computational Geometry Lab. http://cglab.ca

[CKS11] T. M. Chan, P. Kamousi, S. Suri. Stochastic minimum spanning trees in Euclidean spaces. In Proc. of the 27th Symposium on Computational Geometry, pp. 65–74, 2011.

[CLML10] O. Cornelis, M. Lesaffre, D. Moelants, M. Leman. Access to ethnic music: Advances and perspectives in content-based music information retrieval. Signal Processing, 90(4), 1008-1031, 2010.

[CMKB04] J. Cortes, S. Martinez, T. Karatas, F. Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243 – 255, 2004.

[CVD04] R. Cilibrasi, P. Vitányi, R. De Wolf. Algorithmic clustering of music based on string compression. Computer Music Journal, 28(4), 49-67, 2004.

[D99] A. Dumitrescu. On two lower bound constructions. In: Proceedings of 11th Canadian Conference on Computational Geometry, Vancouver, British Columbia, Canada, 111-114, 1999.

[DBBB11] M. Dutt, A. Biswas, P. Bhowmick, B.B. Bhattacharya. On finding an orthogonal convex skull of a digital object. International Journal of Imaging Systems and Technology, 21(1), 14–27, 2011.

[dBCKO08] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars. Computational Geometry: Algorithms and Applications. Springer-Verlag, 2008.

[DCBLMO15] J.M. Díaz-Báñez, L. Caraballo, S. Bereg, M. Lopez, I. Maza, A. Ollero. The Synchronization Problem for Information Exchange between Aerial Robots under Communication Constraints. ICRA 2015 IEEE International Conference on Robotics and Automation, pp. 4650-4655, 2015.

[DFGRT04] J. M. Díaz-Báñez, G. Farigu, F. Gómez, D. Rappaport, G. T. Toussaint. (2004, July). El compás flamenco: a phylogenetic analysis. In Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science, pp. 61-70, 2004.

[DL00] U. Dieckmann, R. Law. The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, 2000.

[DJPP13] I. Dimitriu, T. Johnson, S. Pal, E. Paquette. Functional limit theorems for random regular graphs. Probability Theory and Related Fields, 156 (3-4), 921-975, 2013.

[DP12] I. Dimitriu, S. Pal. Sparse regular random graphs: Spectral density and eigenvectors, Ann. Probab. 40(5), 2197-2235, 2012.

[DR14] J. M. Díaz-Báñez, J. C. Rizo. An efficient DTW-based approach for melodic similarity in flamenco singing. SISAP 2014, Lecture Notes in Computer Science, Springer, 289–300, 2014.

[DSST13] A. Dumitrescu, A. Schulz, A. Sheffer, Cs.D. Tóth. Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discrete Math., 27, 802-826, 2013.

[E97] U. Elsner. Graph partitioning. A survey. Preprint SFB393/97-27, Technische Universität Chemnitz, 1997.

[EHH13] H. ElSawy, E. Hossain, M. Haenggi. Stochastic geometry for modeling, analysis, and design of multitier and cognitive cellular wireless networks: A survey. Communications Surveys & Tutorials, IEEE, 15(3), 996-1019, 2013.

[EMSEWM05] The European Mathematical Society Committee Women and Mathematics. Statistics. URL: https://womenandmath.wordpress.com/pastactivities/ statistics-on-women-in-mathematics

[ER60] P. Erdös, A. Renyi, On Random Graphs I, Publ. Math. Debrecen 6, 290-297, 1959.

[ER60b] P. Erdös, A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61, 1960.

[F73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98), 298-305, 1973.

[FL14] R. Fabila-Monroy, J. López. Computational Search of small point sets with small rectilinear crossing number, Journal of Graph Algorithms and Applications, 18(3), 393-399, 2014.

[FM09] V. Franěk, J. Matoušek. Computing d-convex hulls in the plane. Computational Geometry: Theory and Applications, 42(1), 81–89, 2009.

[FMHM15] R. Fabila-Monroy, C. Huemer, D. Mitsche. Empty non-convex and convex four-gons in random point sets. Studia Sci. Math. Hungar., 52(1), 52-64, 2015.

[FN99] P. Flajolet, M. Noy. Analytic combinatorics of non-crossing configurations. Discrete Math. 204, 203-229, 1999.

[FN00] P. Flajolet, M. Noy. Analytic combinatorics of chord diagrams. In: Formal Power Series and Algebraic Combinatorics, 191-201, Springer, 2000.

[FW98] E. Fink, D. Wood. Generalized halfspaces in restricted-orientation convexity. Journal of Geometry, 62(1), 99–120, 1998.

[FW04] E. Fink, D. Wood. Restricted-Orientation Convexity. Monographs in Theoretical Computer Science (An EATCS Series). Springer-Verlag, 2004.

[G83] R.H. Güting. Conquering Contours: Efficient Algorithms for Computational Geometry. PhD thesis, Fachbereich Informatik, Universität Dortmund, 1983.

[G83a] R.H. Güting. Stabbing c-oriented polygons. Information Processing Letters, 16(1), 35–40, 1983.

[G84] R.H. Güting. Dynamic c-oriented polygonal intersection searching. Information and Control, 63(3), 143–163, 1984.

[G99] J.L. Ganley. Computing optimal rectilinear steiner trees: A survey and experimental evaluation. Discrete Applied Mathematics, 90(1–3), 161–171, 1999.

[GJ77] M.R. Garey, D.S. Johnson. The rectilinear steiner tree problem is np-complete. SIAM Journal on Applied Mathematics, 32(4), 826–834, 1977.

[GDGM14] F. Gómez-Martín, J. M. Díaz-Báñez, E. Gómez, J. Mora. Flamenco music and its computational study. In BRIDGES: Mathematical Connections in Art, Music, and Science, 119–126, 2014.

[GMGD16] F. Gómez, J. Mora, E. Gómez, J. M. Díaz-Báñez. Melodic Contour and Mid-Level Global Features Applied to the Analysis of Flamenco Cantes. Journal of New Music Research, (accepted for publication), 2016.

[GNT00] A. García, M. Noy, J. Tejel. Lower bounds on the number of crossing-free subgraphs of Kn. Comput. Geom. Theory Appl. 16, 211-221, 2000.

[GP83] J. E. Goodman, R. Pollack. Multidimensional sorting. SIAM J. Comput., 12(3), 484-507, 1983.

[GPS89] J. E. Goodman, R. Pollack, B. Sturmfels. Coordinate representation of order types requires exponential storage. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC '89, pp. 405-410, New York, USA, 1989.

[H12] M. Haenggi. Stochastic geometry for wireless networks. Cambridge University Press, 2012.

[HABDF09] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, M. Franceschetti. Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), 1029-1046, 2009.

[HdM15] C. Huemer, A. de Mier. Lower bounds on the maximum number of noncrossing acyclic graphs, European J. Combin, 48, 48-62, 2015.

[HO07] A. Hora, N. Obata. Quantum Probability and Spectral Analysis of Graphs, Springer, 2007.

[HSSSTW13] M. Hoffmann, A. Schulz, M. Sharir, A. Sheffer, C. D. Tóth, and E. Welzl. Counting plane graphs: Flippability and its applications, In: Thirty Essays on Geometric Graph Theory, Springer, 303-326, 2013.

[JM96] M. Juvan, B. Mohar. Optimal linear labelings and eigenvalues. Discrete Applied Math. 36(2), 153-168, 1996.

[L04] F. Lehner. Cumulants in noncommutative probability theory I. Noncommutative exchangeability systems. Math. Z. 248(1), 67-100, 2004.

[LKV11] T. van Lankveld, M. van Kreveld, R. Veltkamp. Identifying rectangles in laser range data for urban scene reconstruction. Computers & Graphics, 35(3), 719–725, 2011. Shape Modeling International (SMI) Conference 2011.

[KDMG15] N. Kroher, J. M. Díaz-Báñez, J. Mora, E. Gómez. Corpus COFLA: A research corpus for the Computational study of Flamenco Music. ACM Journal on Computing and Cultural Heritage (in print), 2016.

[KLV09] M. van Kreveld, T. van Lankveld, R. Veltkamp. Identifying well-covered minimal bounding rectangles in 2d point data. In 25th European Workshop on Computational Geometry, pages 277–280, 2009.

[KPMD15] N. Kroher, A. Pikrakis, J. Moreno, J. M. Díaz-Báñez. Discovery of repeated vocal patterns in polyphonic audio: A case study on flamenco music. In IEEE 23rd European Signal Processing Conference (EUSIPCO’15), 41-45, 2015.

[KT10] P. V. Kranenburg, G. Tzanetakis. A Computational Approach to the Modeling and Employment of Cognitive Units of Fold Song Melodies using Audio Recordings. In 11th International Conference on Music Perception and Cognition (ICMPC 11), 2010.

[M81] B. McKay, The expected eigenvalue distribution of a large regular graph, Lin. Alg. Appl 40, 203-216, 1981.

[M91] B. Mohar. The Laplacian spectrum of graphs. In: Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, eds., Graph Theory, Combinatorics, and Applications (Vol. 2), Wiley, 871-898, 1991.

[M97] B. Mohar. Some applications of Laplace eigenvalues of graphs. In: G. Hahn, G.Sabidussi eds., Graph Symmetry: Algebraic Methods and Applications, NATO ASI Series C, 497, 225-275, 1997.

[MF82] D.Y. Montuno, A. Fournier. Finding XY Convex Hull of a Set of XY Polygons. Computer Systems Research Group, University of Toronto, 1982.

[MP98] J. Matoušek, P. Plecháč. On Functional Separately Convex Hulls. Discrete & Computational Geometry, 19(1), 105–130, 1998.

[MS01] V. J. Martinez, E. Saar. Statistics of the galaxy distribution. CRC Press, 2001.

[MSR11] D. Mitsche, M. Saumell, R. I. Silveira. On the number of higher order Delaunay triangulations. Theoretical Computer Science 412(29), 3589-3597, 2011.

[MSW13] N. Mathew, S. L. Smith, S. L. Waslander. A graph-based approach to multirobot rendezvous for recharging in persistent tasks. In 2013 IEEE International Conference on Robotics and Automation (ICRA), 3497-3502, 2013.

[N00] T. Nakamigawa. A generalization of diagonal flips in a convex polygon. Theor. Comput. Sci., 235(2), 271-282, 2000.

[NBK07] H. Q. Nguyen, F. Baccelli, D. Kofman. A stochastic geometry analysis of dense ieee 802.11 networks. In INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pp. 1199-1207, 2007.

[NLLW83] T.M. Nicholl, D. Lee, Y. Liao, C. Wong. On the XY convex hull of a set of XY polygons. BIT Numerical Mathematics, 23(4), 456–471, 1983.

[OSW84] T. Ottmann, E. Soisalon-Soininen, D. Wood. On the definition and computation of rectilinear convex hulls. Information Sciences, 33(3), 157–171, 1984.

[P16] P. Pérez-Lantero. Area and perimeter of the convex hull of stochastic points. The Computer Journal, to appear, 2016.

[PDB12] F. Pasqualetti, J. W. Durham, F. Bullo. Cooperative patrolling via weighted tours: Performance analysis and distributed algorithms, IEEE Transactions on Robotics, 28(5), 1181 –1188, 2012.

[PGWC09] P. C. Pinto, A. Giorgetti, M. Z. Win, M. Chiani. A stochastic geometry approach to coexistence in heterogeneous wireless networks. IEEE Journal on selected Areas in Communications, 27(7), 1268-1282, 2009.

[PRSU13] C. Peláez, A. Ramírez-Vigueras, C. Seara, J. Urrutia. On the Rectilinear Convex Layers of a Planar Set. In Mexican Conference on Discrete Mathematics and Computational Geometry, 60th birthday of Jorge Urrutia, pages 195–202, November 11–15 2013.

[PT08] A. Pinto, P. Tagliolato. A generalized graph-spectral approach to melodic modeling and retrieval. In Proceedings of the 1st ACM international conference on Multimedia information retrieval, 89-96, 2008.

[PVDWV07] A. Pinto, R. H. Van Leuken, M. F. Demirci, F. Wiering, R. C. Veltkamp. Indexing Music Collections Through Graph Spectra. In ISMIR, 153-156, 2007.

[R75] J. Riordan. The distribution of crossings of chords joining pairs of 2n points on a circle. Mathematics of Computation, 29(129), 215-222, 1975.

[R87] G.J.E. Rawlins. Explorations in Restricted-Orientation Geometry. PhD thesis, School of Computer Science, University of Waterloo, 1987.

[RCH07] J.R. Riehl, G.E. Collins, J.P. Hespanha. Cooperative graph-based model predictive search. In 46th IEEE Conference on Decision and Control, 2998-3004, 2007.

[RFCXKA04] D. Raicu, J.D. Furst, D. Channin, D. Xu, A. Kurani, S. Aioanei. A texture dictionary for human organs tissues’ classification. In Proceedings of the 8th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2004), 2004.

[RS13] R.B. Richter, G. Salazar. Crossing numbers. In: Handbook of Graph Theory, Second Edition. J.L. Gross, J. Yellen, P. Zhang (Eds.). Chapman and Hall, 2013.

[S91] S. Schuierer. On generalized visibility. PhD thesis, Institut für Informatik, Universität Freiburg, 1991.

[S14] M. Schaefer, The graph crossing number and its variants: a survey. The Electronic Journal of Combinatorics, Dynamic Survey #DS21, 2014.

[SMBD15] F. Sheikhi, A. Mohades, M. de Berg, M. Davoodi. Separating bichromatic point sets by l-shapes. Computational Geometry: Theory and Applications, 48(9), 673-687, 2015.

[SP00] D. Stoyan, A. Penttinen. Recent applications of point process methods in forestry statistics. Statist. Sci., 15(1), 61-78, 2000.

[SS03] F. Santos, R. Seidel. A better upper bound on the number of triangulations of a planar point set. J. Combin. Theory Ser. A 102, 186-193, 2003.

[SS11] M. Sharir, A. Sheffer. Counting triangulations of planar point sets, Electr. J. Comb., 18(1), 2011.

[SS13] M. Sharir, A. Sheffer. Counting Plane Graphs: Cross-Graph Charging Schemes, Combinat. Probab. Comput. 22, 935-954, 2013.

[SSR12] S.L. Smith, M. Schwager, D. Rus. Persistent robotic tasks: Monitoring and sweeping in changing environments, IEEE Transactions on Robotics, 28(2), 410–426, 2012.

[SSW13] M. Sharir, A. Sheffer, E. Welzl. Counting Plane Graphs: Perfect Matchings, Spanning Cycles, and Kasteleyn’s Technique, J. Combinat. Theory A, 120, 777-794, 2013.

[ST96] D. Spielman, S.-H. Teng. Spectral partitioning works: Planar graphs and finite element meshes. Tech. Report: EECS Department, UC Berkeley, 1996. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/1996/5359.html

[ST07] D. Spielman, S.-H. Teng. Spectral partitioning works: Planar graphs and finite element meshes. Linear Algebra and its Applications 421(2-3), 284-305, 2007.

[SU00] J.-R. Sack, J. Urrutia (EDS.). Handbook of Computational Geometry. North-Holland, 2000.

[SW06] M. Sharir, E. Welzl. On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36, 695-720, 2006.

[T13] S. Torquato. Random heterogeneous materials: microstructure and macroscopic properties, volume 16. Springer Science & Business Media, 2013.

[TVW13] L. V. Tran, V. H. Vu, K. Wang. Sparse random graphs: Eigenvalues and eigenvectors. Random Structures and Algorithms 42(1), 110-134, 2013.

[UAR99] E. Uchoa, M.P. de Aragão, C. Ribeiro. Preprocessing steiner problems from vlsi-layout. Networks, 40(1), 38–50, 1999.

[V85] D. Voiculescu, Symmetries of some reduced free product C-algebras in Operator algebras and their connections with topology and ergodic theory. Lecture Notes in Math, 1132, Springer, Berlin, 1985.

[W67] E. P. Wigner. Random matrices in physics. SIAM Review 9, 1-23, 1967.

[WS09] R. Weygaert, W. Schaap. Data Analysis in Cosmology, chapter The Cosmic Web: Geometric Analysis, pp. 291-413. Springer Berlin Heidelberg, 2009.

[WWW87] P. Widmayer, Y. Wu, and C. Wong. On some distance problems in fixed orientations. SIAM Journal on Computing, 16(4), 728–746, 1987.

Work Packages